

ISSN Online: 2722-791X

Point of View Research Management

https://journal.accountingpointofview.id/index.php/POVREMA

This Work is Licensed under a Creative Commons Attribution 4.0 International License

Workload and Operational Costs for Grab **Driver Partners in Makassar City**

Nurul Ayu Zakina Ar (1*)Roni Herison (2) Junaidain (3)

(1) STIE Amkop Makassar, Makassar City, South Sulawesi, Indonesia (2,3) STIE Amkop Makassar, Makassar City, South Sulawesi, Indonesia

Received: Agustus 1, 2025 Accepted: Agustus 10, 2025 Available online: Agustus 20, 2025

E-mail addresses: nurulayuzakina@gmail.com

Abstract

Keywords:

workload, operational costs, income, well-being, Grab.

Conflict of Interest Statement:

The author(s) declares that this research was supported by the Research and Community Service Center (PPPM) of STIE Amkop However, Makassar. supporting institution had no influence on the design, data collection. analysis. interpretation of the study results.

Copyright © 2025 POVREMA. All rights reserved.

The rapid growth of ride-hailing services in Makassar has increased the number of Grab driver-partners. However, behind the flexible work structure, drivers face high workloads and considerable operational costs that directly affect their income and well-being. This study aims to analyze the influence of workload and operational costs on the income and well-being of Grab driver-partners in Makassar City. A descriptive quantitative approach was employed, with data collected through closed-ended questionnaires from 40 purposively selected active drivers (minimum six months of service). Workload variables were measured through working hours, number of trips, peak-hour activity, trip duration, and fatigue level, while operational costs included fuel, vehicle maintenance, insurance, communication, and unexpected expenses. Data were analyzed using normality, multicollinearity, and heteroscedasticity tests, multiple linear regression, and ttests. Findings indicate that both workload (t = 2.174; p = 0.036) and operational costs (t = 5.674; p = 0.000) significantly affect drivers' income. Higher workloads tend to increase earnings but may reduce well-being due to physical and mental fatigue. Efficient operational cost management positively contributes to net income. Balanced workload management and cost control are crucial to sustaining the well-being of ride-hailing drivers. These findings have implications for companies and policymakers to design fairer operational strategies and enhance social protection for driver-partners.

Introduction

The digital era has transformed transportation systems in Indonesia. Online-based transport such as Grab has become a daily mobility option, especially in Makassar as one of the largest cities in Eastern Indonesia. This growth has brought opportunities and challenges for drivers. While flexibility and autonomy attract many workers, they also experience long working hours and high operational expenses.

Previous studies, such as Hasmawati (2023) and Jumhadi (2023), note that most Grab drivers in Makassar work up to 12 hours daily to meet targets, often facing fatigue and reduced well-being. The income gap between effort and reward remains significant, as operational expenses-fuel, maintenance, and application fees - consume a large part of earnings. This finding is consistent with

^{*}Corresponding author.

Neksen (2021) and Sari (2022), who reported that more than 60% of online drivers suffer from physical fatigue and income instability.

The problem becomes more critical as fuel prices and living costs increase. Hidayat (2021) found that average daily earnings barely cover operating costs, leaving limited disposable income. Drivers often reduce vehicle maintenance or shift to lower-quality fuel to save money, increasing safety risks (Yusuf & Lestari, 2020).

Based on these issues, this research investigates how workload and operational costs affect the income of Grab driver-partners in Makassar City. The study aims to provide insight for policymakers and companies to ensure fairer working systems for gig-economy workers.

Literature Review

Workload refers to the amount of effort, tasks, and time an individual spends on job activities. It can be physical, mental, or time-based (Suhaemi, 2021). For drivers, it includes the number of hours, trips, and stress levels. Overload can lead to reduced productivity, stress, and health risks.

Operational costs are all expenditures required to run daily activities. In the ride-hailing context, these include fuel, maintenance, data plans, and tolls. According to Renaldi (2023), efficient cost management is key to improving driver profitability and financial well-being.

Based on cost–revenue theory, higher operational costs without proportional revenue will reduce net income. However, higher workloads may temporarily increase earnings but harm long-term well-being (Diener, 1984; Simanjuntak, 2011).

Several previous studies have explored the relationship between workload, operational costs, and driver performance in the ride-hailing industry.

Gunawan et al. (2024) examined the effect of workload, compensation, and motivation on online drivers in Bekasi. Their findings revealed that while workload and compensation had no significant influence, motivation played a major role in improving driver performance.

Similarly, Paat et al. (2025) investigated reward, workload, and work environment factors among GrabBike partners in Manado. The study found that rewards and work environment significantly increased productivity, while workload had a negative impact.

In Bandung, Salsabilla et al. (2024) analyzed how working hours, location, and operational costs affected the income of Gojek drivers. The results showed that location significantly influenced income levels, while operational costs and working hours did not have a direct effect.

Overall, these studies indicate that workload and operational costs have varying effects depending on driver conditions, local market dynamics, and company incentive systems. However, few studies have specifically analyzed these factors in Makassar City, especially focusing on both income and well-being. This study therefore aims to fill that research gap.

Research Design and Methodology

This study uses a descriptive quantitative method to measure and analyze the relationship between workload (X1), operational costs (X2), and income (Y). The population consists of active Grab drivers in Makassar who have worked for at least six months. Using purposive sampling, 40 respondents were selected.

Primary data were collected via structured questionnaires using a Likert scale (1–5). Secondary data came from Grab community statistics and local transportation data. The research instruments were designed to measure three main variables: workload (X1), operational costs (X2), and income (Y).

The workload variable (X1) was measured using several indicators related to the drivers' daily work intensity, such as the total number of working hours per day, the number of trips completed, the level of physical and mental fatigue, and the duration of rest between trips. These indicators represent both the quantity and quality of work performed by Grab drivers in Makassar City.

The operational cost variable (X2) covered all expenses that drivers incur while performing their daily activities. The indicators included the amount of daily fuel consumption, the costs of vehicle maintenance or service, communication expenses such as mobile data and internet usage, and other operating expenses such as parking or toll fees. These indicators were used to capture how efficiently drivers manage their financial resources during operations.

The income variable (Y) reflected the financial outcomes obtained from drivers' operational activities. It was measured through three indicators: the total gross income received from completed orders, the deduction of all operational expenses, and the amount of net income earned per day or per month. These indicators were designed to measure drivers' economic performance and financial well-being.

All variables were measured using a five-point Likert scale, ranging from "strongly disagree" (1) to "strongly agree" (5), to assess the respondents' agreement level with each statement provided in the questionnaire. The study applied descriptive statistics, normality, multicollinearity, heteroskedasticity, and multiple linear regression using SPSS..

Table 1. Indicator Variable

Variable	Code	Indicator	Major Reference
Workload (X1)	X1.1	Total working hours per day	Suhaemi (2021); Neksen et al. (2021)
	X1.2	Number of working days per week	Suhaemi (2021); Suyanto & Anggreani
			(2024)
	X1.3	Number of trips completed per day	Simanjuntak (2011); Hasmawati et al.
			(2023)
	X1.4	Level of physical and mental fatigue	Diener (1984); Putra & Sari (2020)
	X1.5	Rest duration during work shifts	Rahman & Akbar (2022); Usman (2021)
Operational Costs (X2)	X2.1	Daily fuel consumption	Renaldi & Pradana (2023); Salsabilla et
			al. (2024)
	X2.2	Vehicle maintenance or service expenses	Jumhadi & Mulyani (2023); Yusuf &
			Lestari (2020)
	X2.3	Mobile data or communication costs	Renaldi & Pradana (2023); Paat et al.
			(2025)
	X2.4	Meal and food expenses during work	Hardati (2021); Hasmawati et al. (2023)
	X2.5	Unexpected costs (parking, penalties, or sudden	Suhaemi & Hasanuh (2021); Gunawan et
		repairs)	al. (2024)
Income (Y)	Y1.1	Total gross income from completed orders	Simanjuntak (2011); Suyanto & Anggreani
			(2024)
	Y1.2	Deduction of operational costs	Suhaemi & Hasanuh (2021); Pango et al.
			(2024)
	Y1.3	Net income per day or month	Salsabilla et al. (2024); Usman (2021)

Source: data research 2025

Findings and Discussion

Findings

This section presents the empirical results of the study, based on the responses of 40 active Grab driver-partners in Makassar City. The findings describe the respondents' characteristics and the results of the statistical tests used in the analysis.

Respondent Characteristics (n = 40)

Characteristic	Category	Frequency (n)	Percentage (%)
Gender	Male	40	100.0
Genuel	Female	0	0.0
	20-29	12	30.0
Age (Years)	30-39	18	45.0
	≥ 40	10	25.0
Education Level	Primary School	5	12.5

	Junior High School	14	35.0
	Senior High School	21	52.5
	<1	9	22.5
Working Experience (Years)	1-3	20	50.0
	> 3	11	27.5
	0-1	8	20.0
Number of Family Dependents	2-3	21	52.5
	≥ 4	11	27.5
	< 2,000,000	7	17.5
Monthly Income (IDR)	2,000,000 - 3,000,000	19	47.5
	> 3,000,000	14	35.0

Source: Primary data processed (2025)

This profile indicates that Grab drivers in Makassar are dominated by male workers in productive age groups with moderate education levels. Before conducting regression analysis, several classical assumption tests were performed to ensure that the data met statistical requirements. The normality test using the Kolmogorov–Smirnov method obtained a significance value of 0.200, which is greater than 0.05. This indicates that the residuals are normally distributed, and therefore, the regression model fulfills the assumption of normality.

The multicollinearity test showed tolerance values of 0.975 and variance inflation factor (VIF) values of 1.026 for both independent variables—workload and operational costs. Since the tolerance value is higher than 0.10 and the VIF value is lower than 10, it can be concluded that there is no multicollinearity problem between the independent variables.

Furthermore, the heteroskedasticity test was carried out using a scatterplot diagram of standardized residuals. The points were spread randomly around the zero line and did not form any specific pattern, indicating that the variance of residuals was constant. Therefore, it can be concluded that the regression model does not experience heteroskedasticity.

Based on these results, the data met all classical assumptions — including normality, non-multicollinearity, and homoscedasticity — which means the regression model is appropriate and reliable for further analysis.

The multiple linear regression analysis produced the following equation:

 $Y = 7.521 + 0.167X_1 + 0.470X_2$

Where:

Y = Income of Grab driver-partners

 $X_1 = Workload$

 X_2 = Operational Costs

Table 2. Regression Analysis Results

Variable	Coefficient (B)	t	Sig.	Interpretation
Constant	7.521	3.070	0.004	Significant
Workload (X1)	0.167	2.174	0.036	Significant
Operational Costs (X2)	0.470	5.674	0.000	Significant

Source: data research 2025

The model shows that both workload and operational costs significantly affect driver income, with operational costs having a stronger effect.

The R Square value is 0.478, meaning that 47.8% of income variation can be explained by workload and operational costs, while the remaining 52.2% is influenced by other factors not included in the model, such as location, demand variation, and incentive structure.

The results of this study reveal several important findings related to the influence of workload and operational costs on the income of Grab driver-partners in Makassar City. First, the analysis shows that workload has a significant and positive effect on income, with a t-value of 2.174 and a significance level of 0.036. This means that when drivers increase their working hours, number of trips, and effort in completing orders, their income also tends to rise. Drivers who work more intensively are more likely to achieve higher earnings, even though this may also lead to increased fatigue.

Second, the study finds that operational costs have a significant and positive effect on income, with a t-value of 5.674 and a significance level of 0.000. This result indicates that drivers who spend more on fuel, vehicle maintenance, and other work-related expenses generally achieve higher gross income. However, the relationship suggests that higher spending is often a result of more intensive work activities, meaning that greater operational expenses are accompanied by greater revenue generation.

Lastly, the regression model demonstrates that both workload and operational costs together have a significant combined effect on income, as reflected in the F-test result (F = 16.926, p < 0.001). The coefficient of determination ($R^2 = 0.478$) shows that 47.8% of the variation in driver income can be explained by the two variables examined in this study, while the remaining 52.2% is influenced by other factors such as location, demand fluctuation, or company incentive systems.

In general, these findings indicate that the level of work intensity and the ability to manage operational costs play crucial roles in determining the income of Grab drivers in Makassar City. Drivers who manage to balance their workload efficiently and maintain cost control are more likely to achieve stable and sustainable earnings.

Discussion

The results of this study provide clear evidence that both workload and operational costs significantly influence the income of Grab driver-partners in Makassar City. These findings confirm the theoretical assumptions of labor productivity and cost–revenue relationship, where the amount of effort and expenditure directly affects financial outcomes.

The first finding shows that workload positively affects income. Drivers who work longer hours and complete more trips tend to earn higher income. This aligns with the labor productivity theory proposed by Simanjuntak (2011), which states that output increases as workers allocate more time and energy to their tasks. In the context of Grab drivers, a higher workload often means more opportunities to receive orders, which in turn increases daily earnings. However, consistent with subjective well-being theory (Diener, 1984), an excessive workload can also result in physical and mental exhaustion, leading to reduced overall satisfaction and well-being. This suggests that although additional working hours may raise income, they also come with potential costs to drivers' health and quality of life.

The second finding confirms that operational costs significantly influence income. Drivers who spend more on fuel, maintenance, and other operational needs tend to generate higher gross revenue. This is consistent with the cost–revenue relationship theory, which argues that higher costs, when associated with greater productivity, can lead to increased income if managed efficiently. In this study, drivers who invested more resources in maintaining their vehicles and operating longer shifts also achieved better financial outcomes. However, this relationship is double-edged: if operational expenses rise without a corresponding increase in completed trips or bonuses, drivers' net income may decrease. Therefore, efficient cost management becomes essential for maintaining profitability in the gig-economy environment.

The regression model also indicates that workload and operational costs together explain 47.8% of income variation among Grab drivers. This finding reinforces the welfare economics perspective, which emphasizes that individual welfare depends not only on income but also on the fairness and efficiency of resource allocation. In this case, balancing work intensity and managing costs effectively can improve both financial stability and perceived well-being among driver-partners. The result aligns

with previous studies by Paat et al. (2025) and Salsabilla et al. (2024), which found that operational expenses and working conditions are among the most significant determinants of income and satisfaction in the ride-hailing sector.

In general, these findings highlight that Grab drivers' income is largely shaped by the trade-off between effort and expenditure. Drivers who manage their time, workload, and operational costs effectively can sustain higher income without jeopardizing their well-being. Conversely, when work pressure and costs are high but efficiency is low, financial and psychological stress may increase. This balance represents a critical factor for gig-economy workers and provides useful insight for policymakers and platform companies in designing more equitable and sustainable systems.

Conclusion

This study concludes that both workload and operational costs significantly affect the income of Grab driver-partners in Makassar City. The results of the multiple regression analysis show that workload has a positive and significant effect on income, meaning that the more time and effort a driver spends working, the higher the income earned. Likewise, operational costs also have a positive and significant effect on income, which implies that greater expenses for fuel, maintenance, and other operational needs tend to accompany higher levels of income. However, this pattern also indicates that drivers often have to work longer hours and spend more to achieve satisfactory earnings.

From a theoretical and practical perspective, the findings of this study contribute to the understanding of economic behavior among gig-economy workers, particularly in Indonesia's ride-hailing sector. The results support the labor productivity and cost–revenue theories, confirming that workload intensity and cost efficiency are critical determinants of income. Practically, the study highlights the importance for Grab drivers to maintain an optimal balance between working hours and operational efficiency to ensure sustainable earnings. These insights can serve as valuable input for ride-hailing companies and policymakers in designing welfare programs, safety standards, and fairer operational systems for driver-partners.

Despite these contributions, the study has several limitations. The research was limited to a small sample of 40 respondents and focused only on Grab drivers in Makassar City, which may restrict the generalization of the findings. Future research should consider a larger and more diverse sample, including comparisons between different cities or between Grab and Gojek drivers, to provide a broader understanding of income dynamics in the online transportation industry. In addition, integrating qualitative approaches—such as interviews or field observations—could enrich the analysis of drivers' experiences, motivation, and well-being in greater depth.

Acknowledgment

The author sincerely expresses gratitude to the Research and Community Service Center (PPPM) of STIE Amkop Makassar for the support provided throughout the research process. Special appreciation is also extended to the Grab driver-partners in Makassar City who willingly participated and shared their valuable time and information during data collection. The author would also like to thank the academic supervisors and lecturers of STIE Amkop Makassar for their continuous guidance, encouragement, and constructive feedback that greatly contributed to the completion of this study. Finally, deep gratitude is conveyed to family members and close colleagues for their moral support, patience, and motivation throughout the entire research and writing process.

References

- Diener, E. (1984). Subjective well-being. Psychological Bulletin, 95(3), 542-575.
- Gunawan, N. F., Rianto, M. R., Woestho, C., Bukhari, E., & Khan, M. A. (2024). The effect of workload, compensation, and motivation on online driver performance in Bekasi City. Indonesian Journal of Economics and Strategic Management (IJESM), 2(1), 689–698.
- Hardati, R. N. (2021). The influence of driver performance and application facilities on loyalty through customer satisfaction (A case study on Gojek Malang). Profit: Jurnal Administrasi Bisnis, 15(1), 74–83. https://doi.org/10.21776/ub.profit.2021.015.01.8
- Hasmawati, N. A. A., Hasbiullah, H., & Mahmud, A. K. (2023). The impact of fuel price increases, working hours, and incentives on the income of online transport drivers in Makassar City. Bulletin of Economic Studies (BEST), 3(3), 123–131. https://doi.org/10.24252/best.v3i3.42473
- Jumhadi, J., & Mulyani, A. S. (2023). The development of the online transportation industry in the 5.0 era of PT Gojek Indonesia. Jurnal Cakrawala Ilmiah, 2(6), 2393–2402. https://doi.org/10.53625/jcijurnalcakrawalailmiah.v2i6.4907
- Neksen, A., Wadud, M., & Handayani, S. (2021). The influence of workload and working hours on employee performance at PT Global Sumatera Group. Jurnal Nasional Manajemen Pemasaran dan SDM, 2(2), 105–112. https://doi.org/10.47747/jnmpsdm.v2i2.282
- Paat, Y. B., Taroreh, R. N., & Lumintang, G. G. (2025). The effect of reward, workload, and work environment on the productivity of GrabBike partners in Manado City. Musytari: Neraca Manajemen, Ekonomi, 16(3). https://doi.org/10.8734/mnmae.v1i2.359
- Pango, N. A., Pakaya, A. R., & Monoarfa, V. (2024). Improving Gojek driver productivity in Gorontalo City: The role of safety and working hours. Jambura: Journal of Management and Business, 6(3), 1299–1306. http://ejurnal.ung.ac.id/index.php/JIMB
- Renaldi, R., & Pradana, M. (2023). Expectation analysis of online transportation applications using the importance–performance analysis (IPA) approach. SEIKO: Journal of Management and Business, 6(1), 887–897. https://doi.org/10.37531/sejaman.v6i1.4114
- Salsabilla, H. Q., Budiman, A., & Yusuf, I. (2024). The impact of working hours, location, and operational costs on the income of Gojek drivers in Bandung City. Management Studies and Entrepreneurship Journal, 5(2), 9621–9632. http://journal.yrpipku.com/index.php/msej
- Simanjuntak, P. (2011). Productivity and labor efficiency theory. Jakarta: LPFE-UI Press.
- Suhaemi, U., & Hasanuh, N. (2021). The effect of business income and operational costs on net profit. Competitive: Journal of Accounting and Finance, 5(2), 35–40. https://www.academia.edu/116537329
- Suyanto, & Anggreani, M. P. (2024). The influence of business location on income. INNOVATIVE: Journal of Social Science Research, 4(1), 9183–9190. https://j-innovative.org/index.php/Innovative/article/view/8693/6132

- Syahreza, D. S., Harmen, H., Aditiya, F., Azjahra, K. R., Zhufriy, N. N., Sianturi, P. W., & Fauziah, S. (2024). Changes in incentive schemes at PT Grab and Gojek: Impact on driver satisfaction. Economic Reviews Journal, 3(3), 2004–2020. https://doi.org/10.56709/mrj.v3i3.300
- Usman, U. (2021). Analysis of factors affecting Go-Ride driver income during the COVID-19 pandemic in Gorontalo. Al-Buhuts: Journal of Islamic Economics and Business, 17(1), 35–51. https://doi.org/10.30603/ab.v17i1.2234
- Yusuf, I., & Lestari, A. (2020). Operational cost efficiency and its effect on small transportation business performance. Indonesian Economic Journal, 4(2), 55–66.